
NONLINEAR TIME SERIES ANALYSIS,
WITH APPLICATIONS TO MEDICINE

José María Amigó

Centro de Investigación Operativa, Universidad Miguel Hernández, Elche (Spain)

J.M. Amigó (CIO) Nonlinear time series analysis 1 / 37



LECTURE 5
NONLINEAR METHODS IN MEDICINE II:

STUDY CASES

J.M. Amigó (CIO) Nonlinear time series analysis 2 / 37



OUTLINE

1 STUDY CASE 1: Information content in spike trains
2 STUDY CASE 2: Coupling directionality and neural signals
3 STUDY CASE 3: Characterization of EEG and ECG
4 STUDY CASE 4: Nonlinear analysis of ECG
5 Conclusions of the course
6 References

J.M. Amigó (CIO) Nonlinear time series analysis 3 / 37



Applications to Medicine

STUDY CASE 1: Information content in spike trains1

Peculiarities of the spike trains:

Analog (or continuous) signals

None-or-all signals

They result from very complex interactions ) random (point) processes

1J.M. Amigó et al., Neural Computation 16 (2004) 717.
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1. Information content in spike trains

Discretization of time and quanti�cation:

If (i) T = duration of the signal, (ii) Dt = duration of the bin,

N = T
Dt = length of the time series

Dt is the precision of the measurement.
The quanti�cation x1, ..., xN depends on Dt.
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1. Information content in spike trains

Neuron = Information source.

Probabilities estimates from x1, ..., xN = frequencies in sliding
windows of size L:

p̂(a1, ..., aL) =
#fn : (xn, ..., xn+L�1) = (a1, ..., aL)g

2L

Entropy rate of order L:

h(L, Dt) = �1
L ∑ p̂(a1, ..., aL) log2 p̂(a1, ..., aL)

Entropy rate (information per symbol):

h(Dt) = lim
L!∞

h(L, Dt)
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1. Information content in spike trains

Alternatively, we can estimate h(Dt) via LZ76 complexity:

lim
N!∞

c(xN
1 , Dt)
Dt

= h(Dt) with probability 1.
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1. Information content in spike trains

Experimental work.

1 Intracellular periodic current injection in vivo (frequency = 2 Hz,
0.2 � i � 1.5 nA, 15.56 to 47.64 sec)

2 Visual stimulation with sinusoidal drifting gratings (15.87 to 23.62
sec)

3 Intracellular random current injection in vitro (�1.5 � i � 1.5 nA,
16.32 to 35.47 sec)
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1. Information content in spike trains

Results on h(Dt).

For periodic current injection in vivo:

Coding Frequency Standard Complexity
100 Hz 41.38 42.93
200 Hz 59.20 60.40
300 Hz 68.42 67.00

For visual stimulation:

Coding Frequency Standard Complexity
100 Hz 30.30 32.78
200 Hz 47.85 50.14
300 Hz 62.55 62.11
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1. Information content in spike trains

Results on h(∆t):

For random current injection in vitro (slow decay):

Coding Frequency Standard Complexity
100 Hz 52.38 53.38
200 Hz 68.69 67.23
300 Hz 78.00 74.70

For random current injection in vitro (fast decay):

Coding Frequency Standard Complexity
100 Hz 22.31 19.00
200 Hz 27.75 24.39
300 Hz 31.05 26.03
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Applications to Medicine

STUDY CASE 2: Coupling directionality and neuronal signals.

Let X = (xn) and Y = (yn) be two neuronal signals recorded from
di¤erent brain areas.

Question: In which direction is information �owing?

The mutual information,

I(X, Y) = H(X) +H(Y)�H(X, Y)

is useless because
I(X, Y) = I(Y, X)
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2. Coupling directionality and neuronal signals

Use the idea behind the Granger causality : If

(i) Xδ = (xn+δ), Yδ = (yn+δ), and

(ii) information �ows from the process Y to X at some later time,

then
H(Xδ jX, Y) < H(Xδ jX)

for some δ > 0.
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2. Coupling directionality and neuronal signals

De�nition. Transfer entropy

Iδ
Y!X � H(Xδ jX)�H(Xδ jX, Y) = I(Xδ, Y jX)

= ∑ p(xδ, x, y) log
p(xδ, y jx)

p(xδ jx) p(y jx) .

Hence,
if Y X, then Iδ

Y!X > 0 for some δ > 0.

Similarly one de�nes

Iδ
X!Y � I(Yδ, X jY) = ∑ p(yδ, x, y) log

p(yδ, x jy)
p(yδ jy) p(x jy) ,

If X Y, then Iδ
X!Y > 0 for some δ > 0.
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2. Coupling directionality and neuronal signals

In practice one uses averages,

IY!X =
1
N

N

∑
δ=1

Iδ
Y!X, IX!Y =

1
N

N

∑
δ=1

Iδ
Y!X,

where N is some convenient number of later points.

De�nition. The directionality index between X and Y is

DXY =
IX!Y � IY!X

IX!Y + IY!X
2 [�1,+1]

Then
DXY > 0 ) X drives Y
DXY = 0 ) symmetrical coupling
DXY < 0 ) Y drives X

J.M. Amigó (CIO) Nonlinear time series analysis 14 / 37



2. Coupling directionality and neuronal signals

If you use ordinal symbolic dynamics, IX!Y and IY!X are called
permutation transfer entropy.

X. Li & G. Ouyang2 compared conventional and permutation TE both
with numerical models and intracranial EEG recorded in the CA1/CA3
hippocampus region of rats.

They con�rmed that at the formation of a CA1-CA3 epileptic seizure, the
coupling is unidirectional.

2X. Li and G. Ouyang, Neuroimage 52 (2010) 497.
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2. Coupling directionality and neuronal signals

(X. Li and G. Ouyang)
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2. Coupling directionality and neuronal signals

The lag τ was chosen such that I(X, Y) is maximal
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2. Coupling directionality and neuronal signals

Advantages of the permutation transfer entropy3:

1 Computationally fast
2 Invariant wrt monotonous transformations
3 Robust against additive and multiplicative noise
4 Does not require long segments of data
5 PTE is superior to conventional TE and Granger causality for
identifying the coupling direction between neuronal networks.

3X. Li and G. Ouyang, Neuroimage 52 (2010) 497.
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Study case 3

STUDY CASE 3: Characterization of EEG and ECG

Historical background.

(1985) P.E. Rapp et al, Dynamics of spontaneous neural activity in
the simian motor cortex: the dimension of chaotic neurons, Phys.
Lett. 110, 110

(1985) A. Babloyantz et al., Evidence of chaotic dynamics of brain
activity during the sleep cycle, Phys. Lett A 111, 152.

Scope of nonlinear time series analysis: Extract information

But, what information?
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3. Characterization of EEG and ECG

Very often the analyst only needs to discriminate di¤erent kinds of
dynamics.

Examples:

Epilepsy : normal/abnormal

Sleep: various sleep stages

Coma and anaesthesia: di¤erence depths

Mental states and psychiatric disease

Disturbed cognition and dementia: di¤erent degrees

Cardiac diseases: normal/abnormal
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3. Characterization of EEG and ECG

Example 14. Dynamical change during an epileptic seizure

One of the �rst applications of ordinal patterns and permutation
entropy

Paradigmatic example of application of nonlinear TSA to Medicine

4Y. Cao et al., Physical Review E 70 (2004) 046217.
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3. Characterization of EEG and ECG

(Y. Cao et al.)
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3. Characterization of EEG and ECG

Example 25. Prediction of absence seizure

5X. Li and G. Ouyang, Neuroimage 52 (2010) 497.
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3. Characterization of EEG and ECG

Example 36. ECG from patients with congestive heart failure (CHF).
U. Parlitz et al. used biomarkers obtained via

Heart rate variability parameters

Non-ordinal symbolic dynamics

Ordinal 3- and 4-patterns statistics (with di¤erent lags)

for discriminating CHF patients from control groups using beat-to-beat
time series (RRn).

6U. Parlitz et al., Comp. Biol. Med. 42 (2012) 319.
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3. Characterization of EEG and ECG
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3. Characterization of EEG and ECG

Non-ordinal symbolization used for heart rate variability

Binary quanti�cation:

qn(RRn) =

�
0 if jRRn � RRn�1j < θ
1 if jRRn � RRn�1j � θ

or, to study acceleration and deceleration runs,

qn(RRn) =

�
0 if RRn � RRn�1 � 0
1 if RRn � RRn�1 < 0

Four-symbol quanti�cation:

qn(RRn) =

8>><>>:
0 if µ < RRn � (1+ a)µ
1 if (1+ a)µ < RRn < ∞
2 if (1� a)µ < RRn � µ
3 if 0 < RRn � (1� a)µ
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3. Characterization of EEG and ECG

The best biomarker of CHF was the mean � standard deviation of some
ordinal 4-patterns.

Other authors are also using ordinal patterns as biomarkers to study
biomedical time series (G. Gra¤, K. Keller, G. Ouyang, K. Schindler,...)
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Applications to Medicine

STUDY CASE 4: Nonlinear analysis of ECG7

Data acquisition

Healthy subject asleep

Beat rate � 66 beat/min
Sampling frequency: 250 Hz (∆t = 0.004 s)
Recording time: 3 min (N = 45000 data points)

The full nonlinear analysis involves some 5 basic steps.

7M. Perc, Eur. J. Phys. 26 (2005) 757.
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4. Nonlinear analysis of ECG

Step 1: State space reconstruction

Embedding vectors

s(n) = (sn�(m�1)τ, ..., sn�τ, sn),

False nearest neighbors: m = 10.
Minimum of the mutual information: τ = 9
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4. Nonlinear analysis of ECG

Step 2: Noise reduction

Replace

RRn+bm/2cτ  �
1

jBε(s(n))j ∑
s(k)2Bε(s(n))

RRn�bm/2cτ

with ε = 2σ or ε = 3σ. Here ε = 0.065.

Remark. Some authors interchange steps 1 and 2. In this case, use as a
rule

1/3 � m � ∆t � τ � 2/3

in the noise reduction step.
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4. Nonlinear analysis of ECG

Figure. 2D projection of the reconstructed state space with the optimal
parameters m = 10, τ = 9 before noise reduction (M. Perc).
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4. Nonlinear analysis of ECG

Figure. 2D projection of the reconstructed state space with the optimal
parameters m = 10, τ = 9 after noise reduction (M. Perc).
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4. Nonlinear analysis of ECG

Step 3: Determinism test

Use the Kaplan-Glass test:

Quantize the attractor with a grid of 18� 18� ...� 18 � 3.6� 1012

boxes

The average length κ of all directional vectors Vk, is κ � 0.94

) the signal is deterministic.
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4. Nonlinear analysis of ECG

Step 4: Stationarity test

Use the cross-prediction error statistic

Number of segments: I = 56
Number of points in the segments: N/I = 800
Minimum cross-prediction error: 0.32
Maximum cross-prediction error: 0.60
Average cross-prediction error: 0.45

) the signal is stationary.
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4. Nonlinear analysis of ECG

Step 5: Computation of the attractor invariants

Recommendation: Use well-tested algorithms or o¤-shelf software

Attractors dimensions [P. Grassberger, Phys. Lett 97A (1983) 224]

Lyapunov exponents [M.T. Rosenstein et al., Physica D 65 (1993)
117, H. Kantz, Phys. Lett. A 185 (1994) 77]

In general:

TISEAN project: www.mpipks-dresden.pgg.de/~tisean
Mathematica, MatLab, ...

=) λ � 0.015 =) the data is slightly chaotic!
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Conclusions of the course

1 Nature is nonlinear
2 Nonlinear time series analysis is half a science, half an art

1 The theory is highly sophisticated
2 The practice requires special skills

3 General recommendations

Extract only the information you need
Use di¤erent approaches and techniques
Be aware of the assumptions and approximations
Study the dependence on parameters and scaling behavior
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